ON INTEGRAL ESTIMATES OF NONNEGATIVE POSITIVE DEFINITE FUNCTIONS
نویسندگان
چکیده
منابع مشابه
On pointwise estimates of positive definite functions with given support
The following problem originated from a question due to Paul Turán. Suppose Ω is a convex body in Euclidean space R or in T, which is symmetric about the origin. Over all positive definite functions supported in Ω, and with normalized value 1 at the origin, what is the largest possible value of their integral? From this Arestov, Berdysheva and Berens arrived to pose the analogous pointwise extr...
متن کاملPointwise Estimates Formultivariate Interpolation Using Conditionally Positive Definite Functions
We seek pointwise error estimates for interpolants, on scattered data, constructed using a basis of conditionally positive deenite functions of order m, and polynomials of degree not exceeding m-1. Two diierent approaches to the analysis of such interpolation are considered. The former uses distributions and reproducing kernel ideas, whilst the latter is based on a Lagrange function approach. E...
متن کاملOn Eigenvalue and Eigenvector Estimates for Nonnegative Definite Operators
In this article we further develop a perturbation approach to the Rayleigh– Ritz approximations from our earlier work. We both sharpen the estimates and extend the applicability of the theory to nonnegative definite operators . The perturbation argument enables us to solve two problems in one go: We determine which part of the spectrum of the operator is being approximated by the Ritz values an...
متن کاملGENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS
A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...
متن کاملMultivariate positive definite functions on spheres
In 1942 I.J. Schoenberg proved that a function is positive definite in the unit sphere if and only if this function is a positive linear combination of the Gegenbauer polynomials. In this paper we extend Schoenberg’s theorem for multivariate Gegenbauer polynomials. This extension derives new positive semidefinite constraints for the distance distribution which can be applied for spherical codes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2017
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972717000119